This guide is a "Hello World"-style tutorial which shows how to install, configure, and use a simple Prometheus instance. You will download and run Prometheus locally, configure it to scrape itself and an example application, then work with queries, rules, and graphs to use collected time series data.
Download the latest release of Prometheus for your platform, then extract and run it:
tar xvfz prometheus-*.tar.gz
cd prometheus-*
Before starting Prometheus, let's configure it.
Prometheus collects metrics from targets by scraping metrics HTTP endpoints. Since Prometheus exposes data in the same manner about itself, it can also scrape and monitor its own health.
While a Prometheus server that collects only data about itself is not very
useful, it is a good starting example. Save the following basic
Prometheus configuration as a file named prometheus.yml
:
global:
scrape_interval: 15s # By default, scrape targets every 15 seconds.
# Attach these labels to any time series or alerts when communicating with
# external systems (federation, remote storage, Alertmanager).
external_labels:
monitor: 'codelab-monitor'
# A scrape configuration containing exactly one endpoint to scrape:
# Here it's Prometheus itself.
scrape_configs:
# The job name is added as a label `job=<job_name>` to any timeseries scraped from this config.
- job_name: 'prometheus'
# Override the global default and scrape targets from this job every 5 seconds.
scrape_interval: 5s
static_configs:
- targets: ['localhost:9090']
For a complete specification of configuration options, see the configuration documentation.
To start Prometheus with your newly created configuration file, change to the directory containing the Prometheus binary and run:
# Start Prometheus.
# By default, Prometheus stores its database in ./data (flag --storage.tsdb.path).
./prometheus --config.file=prometheus.yml
Prometheus should start up. You should also be able to browse to a status page about itself at localhost:9090. Give it a couple of seconds to collect data about itself from its own HTTP metrics endpoint.
You can also verify that Prometheus is serving metrics about itself by navigating to its metrics endpoint: localhost:9090/metrics
Let us explore data that Prometheus has collected about itself. To use Prometheus's built-in expression browser, navigate to http://localhost:9090/graph and choose the "Table" view within the "Graph" tab.
As you can gather from localhost:9090/metrics,
one metric that Prometheus exports about itself is named
prometheus_target_interval_length_seconds
(the actual amount of time between
target scrapes). Enter the below into the expression console and then click "Execute":
prometheus_target_interval_length_seconds
This should return a number of different time series (along with the latest value
recorded for each), each with the metric name
prometheus_target_interval_length_seconds
, but with different labels. These
labels designate different latency percentiles and target group intervals.
If we are interested only in 99th percentile latencies, we could use this query:
prometheus_target_interval_length_seconds{quantile="0.99"}
To count the number of returned time series, you could write:
count(prometheus_target_interval_length_seconds)
For more about the expression language, see the expression language documentation.
To graph expressions, navigate to http://localhost:9090/graph and use the "Graph" tab.
For example, enter the following expression to graph the per-second rate of chunks being created in the self-scraped Prometheus:
rate(prometheus_tsdb_head_chunks_created_total[1m])
Experiment with the graph range parameters and other settings.
Let's add additional targets for Prometheus to scrape.
The Node Exporter is used as an example target, for more information on using it see these instructions.
tar -xzvf node_exporter-*.*.tar.gz
cd node_exporter-*.*
# Start 3 example targets in separate terminals:
./node_exporter --web.listen-address 127.0.0.1:8080
./node_exporter --web.listen-address 127.0.0.1:8081
./node_exporter --web.listen-address 127.0.0.1:8082
You should now have example targets listening on http://localhost:8080/metrics, http://localhost:8081/metrics, and http://localhost:8082/metrics.
Now we will configure Prometheus to scrape these new targets. Let's group all
three endpoints into one job called node
. We will imagine that the
first two endpoints are production targets, while the third one represents a
canary instance. To model this in Prometheus, we can add several groups of
endpoints to a single job, adding extra labels to each group of targets. In
this example, we will add the group="production"
label to the first group of
targets, while adding group="canary"
to the second.
To achieve this, add the following job definition to the scrape_configs
section in your prometheus.yml
and restart your Prometheus instance:
scrape_configs:
- job_name: 'node'
# Override the global default and scrape targets from this job every 5 seconds.
scrape_interval: 5s
static_configs:
- targets: ['localhost:8080', 'localhost:8081']
labels:
group: 'production'
- targets: ['localhost:8082']
labels:
group: 'canary'
Go to the expression browser and verify that Prometheus now has information
about time series that these example endpoints expose, such as node_cpu_seconds_total
.
Though not a problem in our example, queries that aggregate over thousands of
time series can get slow when computed ad-hoc. To make this more efficient,
Prometheus can prerecord expressions into new persisted
time series via configured recording rules. Let's say we are interested in
recording the per-second rate of cpu time (node_cpu_seconds_total
) averaged
over all cpus per instance (but preserving the job
, instance
and mode
dimensions) as measured over a window of 5 minutes. We could write this as:
avg by (job, instance, mode) (rate(node_cpu_seconds_total[5m]))
Try graphing this expression.
To record the time series resulting from this expression into a new metric
called job_instance_mode:node_cpu_seconds:avg_rate5m
, create a file
with the following recording rule and save it as prometheus.rules.yml
:
groups:
- name: cpu-node
rules:
- record: job_instance_mode:node_cpu_seconds:avg_rate5m
expr: avg by (job, instance, mode) (rate(node_cpu_seconds_total[5m]))
To make Prometheus pick up this new rule, add a rule_files
statement in your prometheus.yml
. The config should now
look like this:
global:
scrape_interval: 15s # By default, scrape targets every 15 seconds.
evaluation_interval: 15s # Evaluate rules every 15 seconds.
# Attach these extra labels to all timeseries collected by this Prometheus instance.
external_labels:
monitor: 'codelab-monitor'
rule_files:
- 'prometheus.rules.yml'
scrape_configs:
- job_name: 'prometheus'
# Override the global default and scrape targets from this job every 5 seconds.
scrape_interval: 5s
static_configs:
- targets: ['localhost:9090']
- job_name: 'node'
# Override the global default and scrape targets from this job every 5 seconds.
scrape_interval: 5s
static_configs:
- targets: ['localhost:8080', 'localhost:8081']
labels:
group: 'production'
- targets: ['localhost:8082']
labels:
group: 'canary'
Restart Prometheus with the new configuration and verify that a new time series
with the metric name job_instance_mode:node_cpu_seconds:avg_rate5m
is now available by querying it through the expression browser or graphing it.
As mentioned in the configuration documentation a
Prometheus instance can have its configuration reloaded without restarting the
process by using the SIGHUP
signal. If you're running on Linux this can be
performed by using kill -s SIGHUP <PID>
, replacing <PID>
with your Prometheus
process ID.
While Prometheus does have recovery mechanisms in the case that there is an
abrupt process failure it is recommend to use the SIGTERM
signal to cleanly
shutdown a Prometheus instance. If you're running on Linux this can be performed
by using kill -s SIGTERM <PID>
, replacing <PID>
with your Prometheus process ID.
This documentation is open-source. Please help improve it by filing issues or pull requests.